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A direct numerical simulation of transitional pipe flow is carried out with the help of
a spectral element method and used to investigate the localized regions of ‘turbulent’
flow that are observed in experiments. Two types of such regions can be distinguished:
the puff and the slug. The puff, which is generally found at low values of the Reynolds
numbers, is simulated for Re = 2200 where the Reynolds number Re is based on the
mean velocity UB and pipe diameter D. The slug occurs at a higher Reynolds number
and it is simulated for Re = 5000. The computations start with a laminar pipe flow
to which is added a prescribed velocity disturbance at a given axial position and for
a finite time. The disturbance then evolves further into a puff or slug structure.

The simulations confirm the experimentally observed fact that for a puff the
velocity near the leading edge changes more gradually than for a slug where an
almost discontinuous change is observed. The positions of the leading and trailing
edges of the puff and slug are computed from the simulations as a function of time.
The propagation velocity of the leading edge is found to be constant and equal
to 1.56UB and 1.69UB for the puff and slug, respectively. For the trailing edge the
velocity is found to be 0.73UB and 0.52UB , respectively. By rescaling the simulation
results obtained at various times to a fixed length, we define an ensemble average.
This method is used to compute the average characteristics of the puff and slug such
as the spatial distribution of the mean velocity, the turbulent velocity fluctuations and
also the wall shear stress. By computing particle trajectories we have investigated the
entrainment and detrainment of fluid by a puff and slug. We find that the puff detrains
through its trailing edge and entrains through its leading edge. The slug entrains fluid
through its leading and through most of its trailing edge. As a consequence the fluid
inside the puff is constantly exchanged with fluid outside whereas the fluid inside a
slug remains there. These entrainment/detrainment properties which are in agreement
with the measurements of Wygnanski & Champagne (1973) imply that the puff has
the characteristics of a wave phenomenon while the slug can be characterized more
as a material property which travels with the flow.

Finally, we have investigated in more detail the velocity field within the puff. In a
coordinate system that travels with the mean velocity we find recirculation regions
both near the trailing and leading edges which agrees at least qualitatively with
experimental data. We also find streamwise vortices, predominantly in the trailing-
edge region which have been also observed in experiments and which are believed to
play an important role in the dynamics of the transition process.

† Author to whom correspondence should be addressed: e-mail f.nieuwstadt@wbmt.tudelft.nl.
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Figure 1. Schematic trace of the velocity of a puff and a slug as a function of time during their
passage past a single observation point on the centreline of the pipe.

1. Introduction
The study of transition from laminar to turbulent flow in a cylindrical pipe started

with the famous experiments of Reynolds (1883). He showed that transition depended
on a non-dimensional number which since then has been named after him. For values
of the Reynolds number smaller than about 2000 the flow was observed to stay laminar
irrespective of any disturbance in the flow. However, another observation made by
Reynolds was that the flow could be kept laminar for larger values than 2000 if
flow disturbances were avoided. The smaller the disturbance the larger the Reynolds
number to which laminar flow could be extended. With his own experimental setup
Reynolds was able to reach a maximum Reynolds number up to 12 000. Since then it
has been confirmed in a number of other experiments that by avoiding disturbances,
a cylindrical pipe flow can be kept laminar until very large Reynolds numbers (see
e.g. Draad 1996 for a review).

The transition process in pipe flow has been studied further in various other exper-
imental investigations and in particular by Wygnanski and co-workers (Wygnanski &
Champagne 1973; Wygnanski, Sokolov & Friedman 1975). They found that beyond
the critical Reynolds number of 2000 flow disturbances evolve into localized regions
of ‘turbulence’. These regions, which fill the pipe cross-section, travel downstream
with the flow and they can be compared with the well-known turbulent spot in a
transitional boundary layer.

Wygnanski & Champagne (1973) also found that there are two types of these
localized, turbulent-like structures: the puff and the slug. The puff is found when
the Reynolds number is below Re ∼ 2700 and the slug appears when the Reynolds
number is above Re ∼ 3000. Both the puff and the slug are characterized by a distinct
trailing edge over which the flow changes almost discontinuously from the ‘turbulent’
flow conditions inside the structure to the laminar flow outside. The puff and slug
are, however, different with respect to their leading edge. For the puff the change of
velocity near the leading edge is rather gradual and it changes smoothly from the
laminar velocity in front of the puff to the ‘turbulent’ velocity inside it. The change
of velocity near the leading-edge of a slug is again quite sudden. A schematic picture
of this behaviour of the centreline velocity which distinguishes the puff from the slug,
is given in figure 1.

Various other experimental studies, e.g. those by Darbyshire & Mullin (1995), have
also shown that the characteristics of a puff and slug are independent of the details
of the initial disturbance from which they evolve. In addition, it was found that the
puff and slug are also independent of the mean flow conditions, i.e. whether the pipe
flow has a constant pressure drop or a constant flow rate.
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All these experiments have provided much data on the transition process in a pipe
flow in general and on the related puff and slug structures in particular. Nevertheless,
there is a need for more information, and in particular on the flow details, that can
shed more light on the mechanism of the transition process because from a theoretical
point of view the transition of cylindrical pipe flow is still an open problem. More
detailed data could, therefore, inspire or assist theoretical progress.

Apart from laboratory experiments such information can at present be also obtained
from numerical simulation. Such an approach has been applied with much success
to the transition process of a boundary layer over a flat plate (see e.g. Kleiser
& Zang 1991 for a review). Three-dimensional temporal simulations of transition
in plane channel flows have been carried out by Orszag & Patera (1983). Some
numerical results on the transition of a pipe flow were reported by O’Sullivan &
Breuer (1994a, b) who have considered the role of transient growth.

In the present study we will also turn to a numerical investigation of transitional
pipe flow. Different from the numerical studies mentioned above, our main objective is
to perform a simulation of the puff and slug structure. To this end we perform a direct
numerical simulation of a laminar pipe flow at a Reynolds number in which experi-
mentally either a puff or slug has been found to develop. The puff or slug structure is
triggered by imposing a localized velocity disturbance on the flow for a small period
of time. After this excitation the disturbance is transported downstream and develops
into either a puff or slug. From the computational results we are then able to study
the full three-dimensional structure and characteristics of the puff and slug in detail.

The outline of this paper is as follows. First we consider the numerical techniques
and computational procedures that we have used. Next we turn to a discussion of
the simulation data in which we shall compare the results for the puff with those for
the slug. Subsequently we will consider some details of the velocity field of the puff.
We end with some conclusions.

2. Numerical techniques and computational procedures
The Navier–Stokes equations and the continuity equation for a Newtonian incom-

pressible fluid flow expressed in vector notation read

∇ · v = 0, (2.1)

∂v

∂t
+ ω × v = −∇P +

2

Re
∇2v + f, (2.2)

where v is the velocity vector and ω = ∇×v the vorticity. P is defined as P = p+|v|2/2
with p the static pressure fluctuation; f is a forcing term taken to be −(dp̄/dx)ex with
dp̄/dx the average pressure gradient in the streamwise direction. The equations have
been non-dimensionalized by employing the pipe radius R as a characteristic length
and bulk velocity UB as a characteristic velocity. As a result, the Reynolds number
Re = UBD/ν appears in (2.2) in which ν is the kinematic viscosity and D = 2R the
pipe diameter.

A cylindrical coordinate system is most suited for the description of a pipe flow
and therefore used in our study. Hereafter, r, θ and x will denote the radial, azimuthal
and axial (streamwise) direction respectively, and w, v and u the radial, azimuthal
and axial velocity.

To solve (2.1) and (2.2) numerically we use here a spectral method. The main
advantage of such a method is its numerical accuracy which for an investigation
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of transition is essential. Application of spectral methods requires that our prob-
lem must satisfy some constraints such as periodicity. In the azimuthal direction
the flow is periodic by definition. In our computation periodicity is also assumed
in the axial direction over a length L. This implies the computed structures are
limited in length by L. The assumption of periodicity in the axial direction is con-
sistent with the fact that within the computational domain the flow is fully devel-
oped laminar outside the puff and slug. Other constraints to be satisfied are that
in the radial direction, the velocity and total pressure are required to be single-
valued at the centreline. On the pipe wall, the velocity should obey a no-slip condi-
tion.

With the periodic conditions in axial and azimuthal directions, a Fourier–Galerkin
method is a natural choice. In the radial direction, a spectral element method is used
by which the pipe can be subdivided into annular domains. We have chosen Ne such
domains for which the radial coordinates of the outer boundaries are given by

rj = (1− rc)
{

ln

[
Ne − j
Ne − 1

(e− 1) + 1

]}1/2

+ rc, (2.3)

where j = 1, 2, . . . Ne are the indices of the elements and rc the radius of the central
element. Inside each element, a Chebyshev-collocation method is used and the Gauss–
Lobatto collocation points are defined in terms of a local coordinate y ∈ [−1, 1] given
by

y
j
k = cos

πk

N
j
P

,

where k = 0, 1, 2, . . . , Nj
P are the indices of collocation points. For the jth element, the

expansions for the velocity and total pressure can then be written as

v(yj, θ, x) =

M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

N
j
P∑

k=0

v̂jk(m, n)h
j
k(y

j)ei(nαx+mθ), (2.4)

P (yj, θ, x) =

M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

N
j
P∑

k=0

P̂
j
k (m, n)hjk(y

j)ei(nαx+mθ), (2.5)

where hjk is the Lagrangian interpolation polynomial (Gottlieb, Hussaini & Orszag,
1984). On the interface of two adjacent elements, a C1 continuity condition is used.
In our computation we have taken Ne = 4 with rc = 0.1 and in each element NP = 16
except for the central element where NP = 4.

To solve the time-dependent Navier–Stokes equations, we employ a time-splitting
method with a third-order stiffly-stable scheme introduced by Karniadakis, Israeli &
Orszag (1991). In this numerical scheme the nonlinear term, the pressure gradient
term and the viscous term are integrated sequentially in the following three sub-steps:

vn+1/3 − 2∑
q=0

αqv
n−q

∆t
=

2∑
q=0

βq(v × ω)n−q − f, (2.6)

vn+2/3 − vn+1/3

∆t
= −∇Pn+1, (2.7)
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γ0v
n+1 − vn+2/3

∆t
=

1

Re
∇2vn+1, (2.8)

where the superscript denotes the times step. The coefficients in (2.6) and (2.8) are
given by α0 = 3, α1 = −3/2, α2 = 1/3, β0 = 3, β1 = −3, β2 = 1 and γ0 = 11/6.

The nonlinear term v × ω in (2.6) is computed by means of a pseudo-spectral
method and the aliasing error is removed by the 2/3 rule. With help of the continuity
equation (2.1), (2.7) is transformed into a Poisson equation for the total pressure which
is solved with use of the pressure boundary condition proposed by Karniadakis et
al. (1991). The advantage of this pressure boundary condition is its efficient removal
of time-splitting errors. The time-splitting errors are removed further by applying the
Green’s function correction proposed by Marcus (1984). The value of the forcing f is
adjusted at every time step to ensure a constant bulk velocity UB .

The code has been extensively tested for its stability properties. The only numerical
instability found was the linear convective instability which can be avoided by
setting the time step sufficiently small according the Courant–Friedrichs–Lewy (CFL)
criterion.

Furthermore, the code has been validated by the following three test cases. In the
first case, a standard parabolic profile of the axial velocity was computed starting from
an initially zero-velocity field by imposing a fixed streamwise pressure gradient. In
the second case, a linear distribution of the azimuthal velocity in the radial direction
is attained by starting from a zero-velocity field in a pipe rotating around its axis
at a constant angular velocity. In the third case we considered a small axisymmetric
disturbance with streamwise wavelength of α = 6.2 at a Reynolds number Re = 500.
Linear stability theory predicts that this disturbance decays according to

E(t) = E(0)e2ωit

where E(t) is the energy of the disturbance. From linear stability theory we find ωi =
−0.39184. The value obtained from the computation with our code is ωi = −0.39188.
Based on these tests we trust our numerical code to produce correct results.

The puff and slug are triggered by exciting the initial laminar Poiseuille profile
with a disturbance. This disturbance is imposed in the form of local blowing and
suction of fluid through a slit in the pipe wall. In our simulation this is enforced by
prescribing the radial velocity at the pipe wall according to the expression

wdist =
Aw(t)

2

[
cos

2π

∆x
(x− xc) + 1

]
sin θ sinΩt, (2.9)

where Ω denotes the disturbance frequency which is set equal to 8.45 in our compu-
tations. The x in (2.9) lies in the interval

x ∈ [xc − ∆x/2, xc + ∆x/2],

where xc indicates the centre of the perturbation region and ∆x the width of the
region. For the case of the puff the values of both xc and ∆x have been taken equal
to π and for the slug xc = 8π and ∆x = 0.75π. The amplitude envelope function Aw(t)
is illustrated in figure 2. In our case, Ti = 1.0, Td = 2.0, Te = 0.5 and the maximum
of Aw(t) is set equal to 1.1 which implies that the suction/blowing velocity is of the
same order of magnitude as the bulk velocity.

Further computational details for our puff and slug computations are collected in
table 1.

The computations have been carried out on the Cray-C90 of the academic com-
puting centre SARA in Amsterdam. For the slug flow with the number of grid points
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Figure 2. Shape of the velocity disturbance used to trigger the puff and slug as function of time.

Puff Slug

Re 2200 5000
Nx 128 256
Nθ 16 64
Nr 53 53
∆t 0.000929 0.0005
L 32π 32π

Table 1. Computational details for the puff and slug computation: Re is the Reynolds number
based on the mean velocity and pipe diameter; Nx, Nθ and Nr are the number of collocation points
in the axial, tangential and radial direction; ∆t is the time step in the numerical computations
non-dimensionalized with UB and the pipe radius R; L is the pipe length non-dimensionalized with
the radius R.

given in table 1, one time step takes 18 CPU s. For the total simulation we used
40 000 time steps which thus amounts to 200 CPU hours. The number of grid points
is approximately the same as used by Eggels et al. (1994) for the computation of
a fully developed pipe flow at Re = 5000. However, Eggels et al. (1994) took the
length of the computational domain to be 10R whereas in our case it is 32πR. This
difference is the consequence of a compromise that we had to make in view of our
aim to compute the downstream development of the puff and slug structure and the
need to resolve all flow details. It means that the resolution in the axial direction
may be considered as not optimal at least for a completely resolved simulation of
a fully developed turbulent flow. However, we expect the instability processes which
determine the puff and slug structure to be mainly influenced by the large flow scales
which are believed to be adequately resolved by our computation.

3. Comparison of the puff and slug structure
The selection of the Reynolds numbers for the puff and slug computation was

based on the following criteria. From experiments (e.g. Wygnanski & Champagne
1973) it is known that puffs appear when Re . 2700 and slugs for Re & 3000.
Furthermore, Wygnanski et al. (1975) claim to observe for Re ' 2200 a so-called
equilibrium puff. This is a puff which travels down the pipe without changing its
size. We have selected this Reynolds number because an equilibrium puff would
have made our averaging procedure to be discussed below more convenient. The
puff in our computations at Re = 2200 does not satisfy the characteristic of an
equilibrium puff that it stays constant in size. The reason is probably that our
computational domain is too short for the equilibrium to become established but
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(a)

(b)

Figure 3. Numerical flow visualization of the instantaneous structure of (a) a puff at t = 60;
(b) a slug at t = 50.

it should be also mentioned that it is far accepted whether such equilibrium puff
indeed exists. The Reynolds number for the slug was selected because at about
the same Reynolds number we have the results available of a direct numerical
simulation of fully developed pipe flow (Eggels et al. 1994). Thus we are able to
compare the velocity statistics of a slug with those of fully developed turbulent pipe
flow.

Both the puff and the slug are generated by the local blowing/suction method
discussed in the previous section. After the end of the disturbance period, the flow
disturbance develops further under the influence of its own dynamics. This means that
it is transported by the velocity down the pipe while at the same time it grows in size.
When the leading edge of the disturbance reaches the end of the pipe, the periodic
boundary conditions that we use cause the disturbance to re-enter the beginning
of the pipe. As a result we can follow the development of the disturbance and the
resulting puff or slug structure until the leading edge comes too close to the trailing
edge. When this happens the computation has to be stopped.

Before we start to analyse the numerical data by quantitative methods, we first
show a qualitative visualization of our numerical results. This ‘numerical visualization’
is shown in figure 3. To obtain it we introduce in the flow a passive dye in the form
of marked fluid particles starting at given time and at a fixed x-position which is
just downstream of the leading edge of the structure at that time. The dye is emitted
near the pipe wall from two opposite points. When the structure passes the emission
location, the dye is entrained into the puff or slug and is carried along while tracing
the structure. This procedure resembles the method used by Bandyopadhay (1986) in
his experimental visualization of an equilibrium puff. The instantaneous distribution
of the tracer is shown in figure 3 for t = 60 and t = 50 for the puff and slug,
respectively.

The figure shows the main characteristics of the puff and slug structure. Wave-
like motions are visible which have been also observed in experiments. In particular
we observe in the near-wall region upstream of the trailing edge of the puff some
vortex-like structures which were also noted by Bandyopadhay (1986). In addition,
the figure shows that near the leading edge the puff and slug have a quite different
structure which agrees with our schematic picture of both structures shown in figure 1.
On comparing these ‘numerical visualizations’ with the experimental visualization of
Bandyopadhay (1986), we tend to conclude that our simulated structures exhibit quite
realistic features.
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Figure 4. Definition of the various puff/slug elements and the location of the characteristic points:
leading-edge centreline point (LECP), leading-edge wall point (LEWP), trailing-edge centreline
point (TECP), trailing-edge wall point (TEWP); the planes indicated by the numerals I–V are used
as starting positions for the release of particles.
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Figure 5. Position of LECP, LEWP, TECP and TEWP as a function of time: (a) puff; (b) slug.

3.1. Puff and slug growth and their propagation velocity

Both the puff and the slug grow in size when they are moving down the pipe. This
development can be studied by plotting the position of some characteristic points of
the puff/slug as a function of time.

These characteristic points are defined here as the intersection of the leading and
trailing edge of the structure with the pipe centreline and with the wall, as illustrated
in figure 4. The following procedure is used to locate these points in our simulation
results. For each time we compute the root-mean-square (r.m.s.) of the axial velocity
fluctuations, 〈u〉rms, by taking an average over the azimuthal coordinate. Next the
contour line of 〈u〉rms = 10%UB is plotted. The foremost points on the leading and
trailing edge of this contour line are defined as the leading-edge centre point (LECP)
and trailing-edge centre point (TECP), respectively. The intersections of the line
r = 0.95R with the leading and trailing edge of the contour line are defined as the
leading-edge wall point (LEWP) and trailing-edge wall point (TEWP). The region
between the LECP and the LEWP is called the leading-edge segment and the region
between the TECP and the TEWP the trailing-edge segment. The centre region is
denoted the middle segment.

In figure 5 the positions of characteristic points introduced above are shown as a
function of time. First, we would like to draw attention to the fact that the lines for
the LECP are almost parallel to the lines for the LEWP, and similarly for the TECP
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Puff Slug

CLECP 1.68 ± 0.015 1.81 ± 0.033
CLEWP 1.44 ± 0.024 1.56 ± 0.063
CTECP 0.74 ± 0.027 0.53 ± 0.052
CTEWP 0.71 ± 0.025 0.50 ± 0.019

Table 2. Values of the coefficients which denote the velocity of the leading-edge
and trailing-edge points.

and TEWP. This means that the leading-edge and trailing-edge segments (see figure
4) stay nearly constant as a function of time. This gives, in our opinion, some support
to the subdivision of the puff/slug into the three separate segments we have discussed
above. The size of the trailing-edge segment for the puff seems to be about equal to
∼ 10R which is reasonably close to the value of 3D–4D quoted by Bandyopadhay
(1986).

We see in figure 5 that all characteristic points trace out an almost straight line as
a function of time or in other words their convective speed is constant. These speeds
are obtained by fitting a linear curve to the lines of figure 5 and the results are given
in table 2.

Let us define the velocity of the leading edge and trailing edge as

ULE = CLEUB, (3.1)

UTE = CTEUB, (3.2)

with CLE = 1
2

(CLECP + CLEWP) and CTE = 1
2

(CTECP + CTEWP). Based on the results
given in table 2 we find CLE = 1.56 and CTE = 0.73 for the puff and CLE = 1.69 and
CTE = 0.52 for the slug.

For the case of the puff, Champagne & Wygnanski (1973) report for the convective
speed of the leading edge a value equal to 0.92UB and for the trailing edge 0.86UB .
This result was obtained at 505 x/D downstream from the pipe entrance where the
perturbation was introduced. In the experiment carried out by Teitgen (1980) in a fully
developed pipe flow at various Reynolds numbers, he finds at Re = 2200, CLE = 1.40
and CTE = 0.73 at x/D = 300 downstream of the perturbation. Considering the
differences between these experimental values, we have no reason to reject our results
for the puff given in table 2.

For the slug at Re = 5000 the data of Champagne & Wygnanski (1973) lead to 1.55
and 0.62 for the CLE and CTE, respectively. In a more recent experiment by Draad
& Westerweel (1996) values of ∼ 1.7 and ∼ 0.6 were found for CLE and CTE for an
artificially generated slug at Re = 5800 and at a distance x/D = 9–40 from the point
where the disturbance was introduced. The latter results, for which the conditions are
close to our case, agree particularly well with our computational data. However, in
view of the discussion at the end of § 2, we cannot rule out that the computed values
are in this case also influenced by insufficient numerical resolution.

Next we define the propagation speed CP of the puff and slug down the pipe as the
average of the leading-edge and trailing-edge speeds. Based on the results discussed
above for CLE and CTE, we find CP = 1.1UB for both the puff and slug which implies
that both structures are transported with approximately the mean flow speed and
thus can be interpreted as material properties of the flow.
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3.2. Definition of the averaging procedure

The continuous increase in size of the puff/slug complicates the taking of averages. In
principle one could perform a real ensemble average, i.e. perform at each downstream
position an average over many realizations of a puff/slug generated under the same
conditions. However, such a procedure is clearly not feasible because the generation of
a sufficiently large ensemble would take an impracticably large amount of computing
time.

To construct an averaging procedure which can be used in our case, we assume
that the structure of each puff/slug segment (see figure 4) is self-similar with respect
to its instantaneous length during the time periods 20 < t < 50 and 30 < t < 40 for
the puff and slug, respectively and over which we have collected the data for these
structures. We now scale the structure observed at each time to a prescribed length.
For this we shall distinguish between the leading-edge and trailing-edge segments on
the one hand and the middle segment of both the puff and slug on the other hand (see
figure 4). We choose here to scale both the leading-edge and trailing-edge segments
to a length of one unit and the middle segment of the puff/slug to a length of two
units. In the following we shall indicate the scaled coordinates by an asterisk, e.g. x∗.

After rescaling, puffs and slugs observed at different times will all have the same
size. At each position x∗ in this scaled coordinate system we can now define a time
average. As mentioned above this procedure is in principle only justified if the puff
and slug structure is self-similar. However, even if self-similarity is satisfied with
respect to some average length of the puff/slug , the instantaneous length which we
use here as scaling parameter will undoubtedly fluctuate around this average length.
As a result we expect that our averaging procedure will introduce some smoothing
of the puff and slug structure.

The time average in the rescaled coordinates defined above allows us to study the
structure of a puff/slug as a function of the axial, radial and tangential coordinates.
Apart from this time average we shall in general also average over all azimuthal
positions at a fixed value of x∗. For the puff structure we also average over five
realizations of the puff which are discussed in § 3.6. The results obtained with the
procedure discussed above will be called ensemble averages in the following. We note
here that this definition is close to what has been used by Wygnanski & Champagne
(1973) and by Wygnanski et al. (1975). Turbulent fluctuations will be defined as the
deviation of a value observed at a specific x∗ location and time with respect to the
ensemble average.

In the following sections we shall present some ensemble average statistics of the
puff and slug structure.

3.3. Axial velocity

The ensemble average of the axial velocity has been computed in the rescaled
coordinate system for various fixed values of the radial coordinate r. The results for
the puff and slug are shown in figure 6.

Let us consider some of the characteristic features of the axial velocity profile
of the puff and slug that can be observed in this figure. The velocity profile at
the centreline, i.e. r = 0, should in principle show the behaviour which we have
schematically illustrated in figure 1. Indeed we find that near the leading edge of
a puff the velocity varies more gradually than for the slug. However, one should
remember that we are showing here the velocity in rescaled coordinates for which the
leading-edge segment of both the puff and slug have been scaled onto a unit length.
This transformation may somewhat obscure the behaviour of the velocity as function
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Figure 6. Ensemble-averaged axial velocity at fixed values of the radial coordinate r:
(a) puff; (b) slug.
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Figure 7. Time trace of the instantaneous axial and radial velocity at a fixed point on the
centreline of the pipe.

of the real coordinate x but when plotting the instantaneous centreline velocity of the
puff, we observe close agreement with figure 1. As a matter of fact the computational
results shown in figure 7 are strikingly similar to experimental velocity traces obtained
by Darbyshire & Mullin (1995).

From figure 6 it is also apparent that within the puff and slug the profile is more
‘well-mixed’ than the laminar profile. This agrees with the ‘turbulent’ character of the
flow in both structures. Moreover, the ‘well-mixedness’ is larger for the slug than for
the puff which would make the slug more turbulent than the puff.

Finally, we have plotted the mean velocity profiles as a function of r in figure 8. An
inflection point appears in these profiles in the trailing-edge segment. These inflection
points have been also observed in the experiments of Wygnanski & Champagne
(1973). We shall come back to this result in § 4.

3.4. Wall shear stress

In figure 9 we show the ensemble-averaged wall shear stress in the rescaled coordinates
for a puff and slug. We note that all variables shown, are non-dimensional. Therefore
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Figure 9. Ensemble average of the non-dimensional wall shear stress of the as a function of the
rescaled coordinate x∗: (a) puff; (b) slug.

τw can be interpreted as cf/2 where cf is the local friction coefficient. We find that
for both the puff and slug the maximum value of τw ' 0.009. However the shape of
the τw-profile is clearly different for the puff and slug. In the puff the value of the
shear stress is approximately constant in the middle segment, while in the slug two
maxima can be distinguished near both the leading and trailing edge. As a result the
shear stress near x∗ = 2, i.e. in the centre of the middle segment, is smaller for a slug
than for a puff.

3.5. Velocity fluctuations

The velocity fluctuations have been computed according to the procedure mentioned
in § 3.2. Based on the results we can compute the ensemble-averaged variance of these
fluctuations as a function of the non-dimensional coordinates r and x∗. In figure 10
we show the isoline plots of the u′u′, v′v′ and w′w′ variances for both the puff and
slug, respectively.

For the puff we observe a plateau of these variances in the middle segment. This is
in agreement with the behaviour of the wall shear stress in this region shown in figure
9. In the slug all three variances exhibit local maxima which are located near the
leading edge and trailing edge. This is also in agreement with the double maximum
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(c) wrms

found in figure 9 for the wall shear stress. Moreover, the spatial distribution and also
the value of the velocity variances in these regions are in reasonable agreement with
experimental data, e.g. those of Wygnanski & Champagne (1973) and Wygnanski et
al. (1975).

One may wonder whether the turbulence structure in the middle segment resembles
that of a fully developed turbulent flow. To investigate this we consider for the slug
the r.m.s. values of the axial, azimuthal and radial velocity fluctuations in the middle
segment at x∗ = 1.5. The results non-dimensionalized with the uτ value obtained from
the shear stress at the same x∗ position, are given in figure 11. In the same figure
we also show the r.m.s. values obtained from a DNS of fully developed pipe flow at
Re = 5300 (Eggels et al. 1994) which is close to the Reynolds number of our slug
simulation.

The r.m.s. profiles of the slug flow are found to be very close to the direct numerical
simulation data for fully developed pipe flow. This result agrees with the observations
of Wygnanski & Champagne (1973) who observe a close agreement between the
turbulence inside the slug and that in fully developed pipe flow.

We note that this agreement can also be used as additional confirmation that our
numerical resolution is adequate, perhaps with the axial direction as an exception
where our slug data are found to be smaller than the fully developed turbulence
profile. This seems consistent with the fact that in the axial direction our resolution
differs very much from the resolution used by Eggels et al. (1994).

3.6. Effect of initial perturbation

It has been argued by several authors to whom we have referred in our introduction
that the structure of the puff and slug is independent of the details of their initial
conditions. To investigate whether our simulation can confirm this, we have computed
the development of the puff for four additional initial conditions which have been
constructed by adding a horizontal component to the wall-normal perturbation
velocity given in (3.3) below. The magnitude of this horizontal velocity component
has been taken to be 1% of the wall-normal velocity where the amplitude of the
wall-normal velocity has been decreased so that the total disturbance energy remains
constant.

In figure 12 we show the time evolution of the disturbance energy Edis for the five
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Figure 12. The disturbance energy Edis of the puff as a function of time for the five computations
with different initial conditions; the thick solid line represents the average over the five realizations.
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initial conditions. Here, the disturbance energy is defined as

Edis =
1

2

∫ 1

0

∫ 2π

0

∫ 32π

0

(u− ulam)2 r dr dθ dx (3.3)

which become identical to zero for laminar flow. The differences between the five
realizations of the puff seem to be small which leads to the conclusion that the effects
of initial conditions are indeed negligible. In the figure we also show by means of a
thick solid line the average over the five realizations. This average has been used in
all results for the puff that we have discussed and shown in this paper.

We have also performed computations of the puff for different values of the
Reynolds number. The results for the disturbance energy as a function of time are
illustrated in figure 13. We find that the growth of the disturbance energy decreases
when the Reynolds number becomes smaller. Moreover, we find that for Reynolds
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numbers below 2200 the disturbance energy seems to reach a maximum value and
decreases thereafter. This implies that the laminar flow in these cases can be considered
as stable.

3.7. Particle motion within a puff and slug

To investigate the flow field within a puff and slug from a Lagrangian point of
view, we have computed trajectories of fluid particles. The particles are released from
several cross-sections which are shown in figure 4 numbered I to V. Note that these
planes indicate the particle position at release time, i.e. t = 20 and t = 30 for the puff
and slug, respectively.

The number of particles released is 900 and their initial position is randomly
distributed over each plane. The trajectory of each particle is then computed with
help of the instantaneous velocity fields which have been stored at time intervals
δt = 0.1 which is about equal to 100 time steps for the puff and 200 time steps for
the slug computation. This means that the influence on the trajectories of velocity
variations on a time scale < 0.1 is ignored. This time scale is estimated to be smaller
than the Kolmogorov time scale for fully developed turbulence at both Reynolds
numbers. Therefore, the error due to the finite time step is estimated to be small. For
the numerical procedure we use a simple explicit first-order Euler scheme for which
the velocity at each particle location is determined from the stored velocity fields
by means of linear interpolation. We have checked that this procedure is sufficiently
accurate for the computation of particle statistics by performing a computation with
a more accurate spectral interpolation method.

In figure 14 we show the positions of the particles released from the five cross-
sections as a function of time in the form of line histograms. The length of the
histogram denotes the range in particle position and the width is proportional to
the number of particles that are present at the given location. We also show with a
dashed line a (imaginary) particle that travels with the bulk velocity. The position of
the characteristic points defined in § 3.1 are also shown so that we can compare the
location of the particles with the position of these characteristic points of the puff
and slug.

Only a cursory inspection of the figure reveals that the length of the histograms is
much larger for the puff than for the slug. This can be attributed, as already seen in
§ 3.3, to the velocity profile in a puff being less ‘well-mixed’ than in a slug. This would
clearly promote differential displacement of fluid particles that are initially randomly
distributed over a cross-section. Moreover, the turbulence intensity in a slug has been
found to be larger than in the puff. The mixing of particles would therefore be better
in the slug than in the puff which results in the more uniform distribution of particles
in the former structure.

Let us now consider the results for the particles released from planes II, III and
IV, i.e. inside the puff/slug, in somewhat more detail. For the case of the puff, we see
that of all particles released from plane IV an appreciable number can escape from
the puff through the trailing edge. These are most likely to be the particles near the
wall which due to the lower velocity there with respect to the propagation velocity of
the puff are left behind. However, we also find that particles released from plane III
and even from plane II are able to escape from the puff again through the trailing
edge. On the other hand, none of the particles released from these three planes escape
through the leading edge. In contrast, we find that for the slug almost all particles
leaving planes II, III and IV stay within the slug and only very few particles (and
only those leaving from plane IV) are able to escape through the trailing edge. These
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Figure 14. Statistics of particle trajectories released from planes I–V given in figure 4 for a puff
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results imply that a puff loses an appreciable amount of its material through the
trailing edge whereas the slug is able to retain most of its material. This would
explain the quicker growth of the slug with respect to the puff.

Next we consider the particles that leave from cross-section V that is initially
behind the puff or slug. We see that for the case of the puff most of this material is
left behind (especially at the later times) whereas for the slug most of the particles are
entrained into the middle segment. For the particles that leave from plane I, which is
initially in front of the puff or slug, we find that for both structures most eventually
end up in either the puff or slug. These entrainment/detrainment characteristics are
in agreement with the measurements of Wygnanski & Champagne (1973).

These results may be summarized as follows. A slug is entraining material both
at its leading and trailing edge and a puff is entraining only at its leading edge.
Moreover, a slug is able to retain most of its material whereas a puff is losing
material or detraining across its trailing edge. This could perhaps be interpreted as
that a slug has the characteristics of a material structure, i.e. containing all material
that it entrains, whereas a puff behaves also as a wave-like structure, i.e. interchanging
material with the surrounding fluid so that it is not always composed of the same
fluid particles.

4. Details of the velocity field inside a puff
We have limited this investigation to the puff only because, as argued before, the

resolution for the slug calculation may not be sufficient for a completely resolved
computation of all flow details.

4.1. Streamline pattern

Let us consider the azimuthally and time-averaged streamline pattern on a meridian
plane through the puff. To compute this pattern, we must solve the equation

∂2ψ

∂x2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r
= −rωθ, (4.1)

where ψ is the streamfunction and ωθ the ensemble-averaged azimuthal vorticity
component. The streamfunction is related to the axial (vx) and radial (vr) components
of the velocity by

vx =
1

r

∂ψ

∂r
, vr = −1

r

∂ψ

∂x
. (4.2)

Equation (4.1) is now solved subject to the boundary condition ψ |r= 0 = 0 and
ψ |r= 1 = 0. This means that we consider the streamline pattern in a reference frame
that travels with the mean velocity UB . In that case at each cross-section the volume
transport which is proportional to ψ |r=0 −ψ |r=1, is equal to zero.

The resulting streamline pattern is shown in figure 15. Near the trailing-edge and
leading-edge regions we observe recirculation patterns. These are consistent with the
fact that, as we have already seen in § 3.3, the velocity distribution inside a puff
or slug is more well-mixed than for the parabolic laminar profile. The recirculation
pattern implies that in the frame moving with UB at the leading edge fluid enters the
puff/slug near the wall and leaves the puff/slug near the centreline. For the trailing
edge the opposite occurs, i.e. fluid enters at the centreline and leaves near the wall
region. However, we emphasize here that we have found in § 3.1 that the leading-edge
and trailing edge of both the puff and slug do not travel with the bulk speed UB .
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Figure 15. Ensemble-averaged pattern of the azimuthal vorticity component (a) and the
streamlines (b) of a puff for a coordinate system that travels with the bull velocity UB .

Therefore, one cannot interpreted the circulation patterns in terms of entrainment or
detrainment of the puff/slug.

It is not difficult to recalculate the streamline patterns for a coordinate system that
moves with either the trailing-edge or leading-edge velocity. The results are found to
be comparable to the data which have been presented for such patterns by Wygnanski
& Champagne (1973), Wygnanski et al. (1975) and Rubin, Wygnanski & Haritonidis
(1980). Based on these results which also show recirculation patterns near the leading
and trailing edge Wygnanski & Champagne (1973) propose the existence of toroidal
vortices. However, such a vortex pattern has not been observed in our instantaneous
velocity fields. Therefore, their existence is doubtful which agrees with the conclusion
of Bandyopadhay (1986) based on flow visualizations. Nevertheless it is clear that
these recirculation patterns are connected to the shape and dynamics of both the
leading and trailing edge of the puff/slug.

4.2. Helical motions

Until now we have presented ensemble-averaged results, i.e. data which are averaged
both in time and over the azimuthal direction. In this section we present some results
of the instantaneous azimuthal variation of the velocity field.

In figure 16 we show a plot of the instantaneous streamwise vorticity in a cross-
section near the leading edge and trailing edge of the puff at time t = 32. In these plots
we can distinguish some circulation patterns which can be interpreted as a vortex
pair. The vortex pairs are especially clear in the plot of the streamwise vorticity
near the trailing edge where even several of these vortex pairs seem to be present.
Similar streamwise vortex patterns have been also found near the trailing edge in
the experimental results of Bandyopadhay (1986) and Eliahou, Tumin & Wygnanski
(1998). A vortex pair, though rather weak, is also present in our results near the
leading-edge cross-section. The combination of these vortex pairs with the general
axial flow motion would imply that the particles are following helical trajectories in
the flow.

All vortex pairs in figure 16 are found to be symmetric with respect to a vertical
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(a) (b)

Figure 16. Isoline plot of the instantaneous streamwise vorticity in a plane near the leading edge
(a) and trailing edge (b) of the puff at t = 32. Contour spacing 0.1, dotted line negative.

(a) (b)

Figure 17. Isoline plot of the instantaneous streamwise vorticity in a plane near the leading edge
(a) and trailing edge (b) of the puff at t = 2.6 when the introduced disturbance had just stopped.
Contour spacing 0.1, dotted line negative.

line through the pipe axis. From this symmetry property we deduce that they are
related to the initial perturbation (2.9) which is also symmetric with respect to the
same axis. This observation is confirmed in figure 17 where we show plots of the
streamwise vorticity near the leading edge and trailing edge of the puff just after the
perturbation has stopped. The existence of the streamwise vortices is very clear and
they seem to concentrate near the wall.

The streamwise vortices which we have found here are believed to play an essential
role in the turbulence generating mechanism proposed by Waleffe (1997) which is
called a self-sustained process. In this mechanism a pair streamwise vortices cause
inflection points in the axial velocity which subsequently becomes unstable. The
resulting instability process is called a burst and it is able to regenerate the streamwise
vortices so that a next cycle can develop. We note, that apart from the streamwise
vortices, we have observed in our simulation results another ingredient of the self-
sustained process, namely the appearance of inflection points in the axial velocity
profiles shown in figure 6. The appearance of both streamwise vortices and inflection
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points in our simulation results should in our opinion be considered as significant
and their role should be studied further.

5. Conclusions
In this study we have performed a numerical simulation of a puff and a slug

structure in a transitional pipe flow at a Reynolds number of Re = 2200 and
Re = 5000, respectively. The simulation has been carried out with a spectral element
method which combines a high accuracy with an adequate resolution in the different
regions of the pipe. Based on the results of the computations we can draw the
following conclusions.

(a) The leading edge and trailing edge of both a puff and a slug travel with a
constant velocity which we found to be in reasonable agreement with experimental
data. The propagation velocity of the total puff and slug structure is approximately
equal to the bulk velocity.

(b) With help of a procedure to compute ensemble averages, we have determined
several aspects of the mean structure of a puff and a slug. First the velocity profile
confirms the behaviour found in experiments that near the leading edge the centreline
velocity of a puff varies more gradually than in the case of a slug. The wall shear
stress and the velocity fluctuations showed a plateau region in the middle segment for
the case of the puff and a double maximum near both the trailing and leading edge
for the case of the slug. Furthermore, we found that the turbulence within the slug is
quite close to the structure of a fully developed turbulent pipe flow. This result agrees
with experimental observations.

(c) With help of computations for various values of the initial condition we could
estimate that the influence of the details of the initial disturbance on the further
development of the puff and slug is small. This would imply that the influence
of the initial disturbance can be neglected which was also found in experiments.
Furthermore, we have also performed computations for a puff at various values of
the Reynolds number below 2200 and found that the growth of the disturbance
energy decreases as the Reynolds number becomes smaller. It also seems that below
the value Re = 2200 the disturbance energy decays after having reached a maximum
value.

(d) By computing the trajectories of fluid particles released from several cross-
sections within and outside the puff/slug structure, we determined the following
characteristics of both structures. The slug entrains material at both the leading and
trailing edge and keeps the material which it entrains inside it. Together with the
fact that the slug seems to travel at a speed close to the bulk velocity we venture
to conclude that a slug is a material property of the flow. On the other hand, the
puff entrains material only through its leading edge and detrains material across its
trailing edge. This means that the puff constantly exchanges material with the laminar
flow outside the puff. Based on these facts we would characterize the puff to be more
wave-like.

(e) For the case of the puff we have computed several further details of the flow
field. The ensemble-averaged streamline pattern was computed in a frame that travels
with the bulk velocity. This streamline pattern showed recirculation patterns in the
leading-edge and trailing-edge regions which have been also observed in experiments.
Moreover, based on isoline plots of streamwise vorticity we conclude that helical
particle motions exist in the trailing-edge region. Such motions have been also
observed in experiments and they are believed to play a role in the transition process.
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